Dr. Yuanyuan Zhang is working on development of genome design breeding system and understanding the asymmetrical polyploid genome evolution, especially in subgenome diploidization and diversification. He integrates the genomic, transcriptomics, metabolic, phenotypic and epigenomic data of thousands of B. napus accessions to facilitate genome design breeding. As a part of these he and his partners using a mixture of big data analysis, functional genetics, plant biology, evolutionary biology and transcript/metabolite profiling to develop as in depth and broad a picture as possible.

  • Brassica napus population genomics reveals asymmetrical allopolyploid diploidization and diversification.
  • Developing the crop genome design breeding platform/system.
  • Genome-wide association study to dissect the genetic regulation of metabolism and resistance to Sclerotinia sclerotiorum in Brassica napus.
  • Cis- and trans-effect of genome structural variation on gene expression and trait formation in Brassica napus.
  • Exploiting glucosinolate biosynthesis and transport pathway in Brassicaceae.
  • Improving the pedigree breeding with genome synthetic biology in Brassica napus.

Funding

  1. Regulation mechanism and germplasm creation of high-leaf and low-seed glucosinolate contents in Brassica napus. ¥500,000, National Natural Science Foundation of China, 32370681, 2024.01-2027.12
  2. Construction and application of biological database in Brassica napus. ¥360,000, National Key Research and Development Program of China, 2016YFD0101001, 2016.07-2021.06
  3. Metabolite-based genome-wide association study to identify resistance-related genes against Sclerotinia sclerotiorum in Brassica napus. ¥230,000, National Natural Science Foundation of China, 31801730, 2019.01-2021.12
  4. Metabolite-based genome-wide association studies to identify resistance-related genes against Sclerotinia sclerotiorum in Brassica napus. ¥150,000, China Postdoctoral Science Foundation, 2018T110166, 2018.04-2019.10
  5. Metabolite-based genome-wide association studies to dissect the genetic regulation of the resistance to Sclerotinia sclerotiorum in Brassica napus. ¥50,000, China Postdoctoral Science Foundation, 2016M601188, 2016.09-2017.08

Publications

  1. Yuanyuan Zhang, ZhiquanYang, Yizhou He, Dongxu Liu, Yueying Liu, Congyuan Liang, Meili Xie, YupengJia, Qinglin Ke, Yongming Zhou, Xiaohui Cheng, Junyan Huang, Lijiang Liu, YangXiang, Harsh Raman, Daniel J. Kliebenstein, Shengyi Liu, and Qing-Yong Yang.“Structural Variation Reshapes Population Gene Expression and TraitVariation in 2,105 Brassica napus Accessions.” Nature Genetics 56, no. 11 (2024): 2538-50. https://dx.doi.org/10.1038/s41588-024-01957-7.(2023IF=31.8,第一作者;全面解析基因组结构变异调控基因表达和表型变异的分子机制)
  2. Aixia Gu, Xiaomin Li, Zengfeng Wang, Yanhua Wang, Shuxin Xuan, WeiMa, Yalei Zhao, Xueping Chen, Shuangxia Luo, Yuanming Liu, Shengyi Liu, Yuanyuan Zhang*, Jianjun Zhao, and ShuxingShen. “A Triploid-mediated Geneticsystem of Generating Extremely High Genomic Segment Introgression From Brassica oleracea to B. rapa.”Plant Biotechnology Journal, no. 1 (2025) https://onlinelibrary.wiley.com/doi/10.1111/pbi.14564(2023 IF=11.2,通讯作者;创建了由异源三倍体介导的白菜–甘蓝高频渐渗平台,实现了跨物种的大规模渐渗育种)
  3. Yizhou He, Zhiquan Yang, Minqiang Tang, Qing-Yong Yang, Yuanyuan Zhang*, and Shengyi Liu.“Enhancing Canola Breeding by Editing a Glucosinolate Transporter GeneLacking Natural Variation.” Plant Physiology 188, no. 4 (2022): 1848-51. https://dx.doi.org/10.1093/plphys/kiac021.(2022IF=8.005,通讯作者;开发了多拷贝基因功能鉴定的新思路/方法,创制了油菜育种上可直接利用的种子低硫苷、营养组织高硫苷的种质资源)
  4. Raman, Harsh, Rosy Raman, RamethaaPirathiban, Brett McVittie, Niharika Sharma, Shengyi Liu, Yu Qiu, Anyu Zhu,Andrzej Kilian, Brian Cullis, Graham D. Farquhar, Hilary Stuart-Williams,Rosemary White, David Tabah, Andrew Easton, and Yuanyuan Zhang*. “Multienvironment QTL AnalysisDelineates a Major Locus Associated with Homoeologous Exchanges for Water-UseEfficiency and Seed Yield in Canola.” Plant, Cell & Environment 45, no. 7 (2022): 2019-36. https://dx.doi.org/https://doi.org/10.1111/pce.14337.(2022IF=7.947,通讯作者;鉴定并解析了由非同源重组交换(HE)引起的一个调控油菜水分利用率和产量相关性状的QTL位点)
  5. Xueyan Wang, Min Liu, Ruinan Yang, Xiaobo Cui, Jie Liu, Yu Zhang,Yizhou He, Li Yu, Fei Ma, Xiong Zhang, YuanyuanZhang*, Shengyi Liu, Peiwu Li, and Liangxiao Zhang. “Metabolome and Transcriptome Analysis Reveal the Effect of Methyl Jasmonate on Phytosterol Biosynthesis in Brassica napus.” Food Frontiers 5, no. 5 (2024): 2319-32. https://dx.doi.org/https://doi.org/10.1002/fft2.420.(2023IF=9.9,通讯作者;阐述了茉莉酸甲酯对油菜甾醇合成的调控机制)
  6. Yizhou He, Yan Li, Zetao Bai, Meili Xie, Rong Zuo, Jie Liu, JingXia, Xiaohui Cheng, Yueying Liu, Chaobo Tong, Yuanyuan Zhang*, and Shengyi Liu.“Genome-Wide Identification and Functional Analysis of Cupin_1Domain-Containing Members Involved in the Responses to Sclerotinia Sclerotiorum and Abiotic Stress in Brassica napus.” Frontiers in Plant Science 13:983786 (2022). https://dx.doi.org/10.3389/fpls.2022.983786. (2022IF=6.627,通讯作者;解析了BnCDPs基因对油菜菌核病和非生物胁迫的调控机制)
  7. MMU Helal, Rafaqat Ali Gill, Minqiang Tang, Li Yang, Ming Hu,Lingli Yang, Meili Xie, Chuanji Zhao, Xiaohui Cheng, Yuanyuan Zhang*, XiongZhang, and Shengyi Liu. “Snp- and Haplotype-Based Gwas of Flowering-RelatedTraits in Brassica napus.” Plants 10, no. 11 (2021): 2475. https://www.mdpi.com/2223-7747/10/11/2475. (通讯作者;利用Haplotype-GWAS相较于SNP-GWAS的优势剖析了油菜开花调控的遗传结构)
  8. Minqiang Tang, Juanling Li, Xu Hu, Lu Sun, MMU Helal, Jianguo Chen,and Yuanyuan Zhang*. “Asymmetric Divergence in Transmitted Snps of DNAReplication/Transcription and Their Impact on Gene Expression in Polyploid Brassica napus.” Frontiers in genetics 12:756172, no.2182 (2021). https://dx.doi.org/10.3389/fgene.2021.756172. (通讯作者;解析了多倍体油菜中DNA复制和RNA转录突变的亚基因组不对称性)
  9. Yuanyuan Zhang, Baohua Li, Dongxin Huai, Yongming Zhou, and Daniel J. Kliebenstein.“The Conserved Transcription Factors, Myb115 and Myb118, ControlExpression of the Newly Evolved Benzoyloxy Glucosinolate Pathway in Arabidopsis Thaliana.” Frontiers in Plant Science 6 (2015): 343. https://dx.doi.org/10.3389/fpls.2015.00343. (第一作者;报道了调控硫苷合成代谢的两个MYB转录因子)
  10. Yuanyuan Zhang, Dongxin Huai, Qingyong Yang, Yang Cheng, Ming Ma, Daniel J. Kliebenstein,and Yongming Zhou. “Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistanceto Sclerotinia sclerotiorum and Botrytis cinerea.” PloS One 10, no. 10 (2015): e0140491. https://dx.doi.org/10.1371/journal.pone.0140491. (第一作者;通过调控硫苷合成基因增强对油菜菌核病的抗病性)
  11. Baohua Li, Yuanyuan Zhang, SA. Mohammadi, Dongxin Huai, Yongming Zhou, and Daniel J.Kliebenstein. “An Integrative Genetic Study of Rice Metabolism, Growth and Stochastic Variation Reveals Potential C/N Partitioning Loci.” Scientific Reports 6 (2016):30143. https://dx.doi.org/10.1038/srep30143. (并列第一作者;群体代谢组水平阐述了植物碳/氮分配的调控机制)

Patents

  1. 甘蓝型油菜种子硫苷性状的主效QTL位点、SNP分子标记开发及应用,ZL 2019 1 0804728.2(第一完成人)
  2. 硫苷转运相关的甘蓝型油菜BnaA06.GTR2基因及其应用,ZL 2021 1 0363245.0 (第一完成人)
  3. 硫苷转运相关的甘蓝型油菜BnaA09.GTR2基因及其应用,ZL 2021 1 0361987.X (第一完成人)
  4. 一个甘蓝型油菜开花期性状的主效QTL位点、SNP分子标记开发及应用,ZL 2019 1 0521681.9 (第二完成人)
  5. 一个甘蓝型油菜主花序角果数性状的主效QTL位点、SNP分子标记开发及应用,ZL 2019 1 0521682.3 (第二完成人)
  6. 甘蓝型油菜种子油酸性状的主效QTL位点、SNP分子标记开发及应用,ZL 2019 1 0804722.5  (第二完成人)
  7. 调控甘蓝型油菜菌核病抗性的BnTLP1基因及其应用,ZL 2020 1 0905281.0 (第六完成人)
  8. 真菌病害相关的甘蓝型油菜BnTLK1基因及其应用,ZL 2020 1 0948698.5  (第六完成人)
  9. 一种鉴定油菜硫苷含量的单倍体型BnHapGLU及其应用,ZL 2016 1 0325474.2 (第八完成人)
  10. 一种与油菜脂肪酸性状相关的单体型BnHapFatty及其应用,ZL 2016 1 0362173.7 (第八完成人)
  11. 与甘蓝型油菜第一分枝高度性状紧密相关的主效QTL位点及SNP分子标记及应用,ZL 2020 1 0515090.3 (第九完成人)
Interests
  • Genome Design Breeding
Education
  • Assistant Researcher, 2015.06-

    Oil Crops Research Institute, Chinese Academy of Agricultural Sciences

  • Visiting scholar in Plant Science, 2010.10-2012.10

    University of California, Davis, USA

  • M.Sc and Ph.D. Candidate in Crop Genetic and Breeding, 2007.09-2015.06

    University of California, Davis & Huazhong Agricultural University

  • Undergraduate in Agriculture, 2002.09-2006.06

    Shanxi Agricultural University